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Abstract 

A transverse lattice model. with one lattice dimension and two continuum dimen- 
sions. is constructed by introducing Wess-Zumino terms into the gauged 1 + 1 di- 
mensional non-linear sigma model action of the link fields. Its continuum limit is 
the pure Chern-Simons gauge theory in 2 + 1 dimensions. The lattice model is 
quantized? and some simple expectation values for Wilson loops on .V2 Y S’ are 
evaluated. This construction provides an expiicit connection between Chern-Simons 
theory and the gauged Wess-Zumino-Witten model. 

’ bitnec: pgriffin*~fnal 

42 Operated by UnlVerSitieS Research Association Inc. under contract with the United States Department of Energy 



1. Introduction 

We wish to apply the mathematical tools developed in the context of string 

theory directly to physics in higher dimensions. A two-dimensional model should 

be able to describe higher-dimensional dynamical systems with perturbatively small 

interactions in the transverse directions. This is the currently intractable (and 

therefore interesting) regime of the non-linear dynamics in physical non-abelian 

gauge theories. The goal of this type of application of two-dimensional models is 

to solve a significant subset of t,he higher-dimensional theory before resorting to 

numerical simulations. 

These ideas were realized in the context of QCD by Bardeen and Pearson(l] over 

ten years ago, and in subsequent numerical analysis[2]. The physics of two spatial 

‘transverse’ dimensions is described by a lattice gauge theory of link variables. 

The link variables are functions of two longitudinal coordinates and gauged with 

respect to longitudinal gauge transformations by introducing a 2-D gauge field. The 

partition function is given by a set of coupled 2-D gauged non-linear sigma models 

describing the dynamics of the link fields. 

One unsatisfying aspect of their analysis is the approximation of the 2-D non- 

linear sigma model dynamics of link fields with the dynamics of a linear sigma model 

action. This is required because the solution of the 2-D non-linear sigma model[3] 

is not developed to the point where it can be applied in their context. We will 

explore the possibility of avoiding the need for this approximation by introducing 

a 2-D Wess-Zumino[4] term into the sigma model action, and describing higher- 

dimensional gauge theories in the basis of operators given by the well-studied Wess- 

Zumino-Witten[5] (WZW) model. In ,this case, the WZW currents are the linear 

variables which describe exactly the dynamics of the non-linear sigma model. 

In this letter, the simple case of one lattice dimension and two continuum 

dimensions will be used to study the effect of adding Wess-Zumino terms to the 

link actions. We will find that, unlike the case where the regular gauged sigma 

model is used as the link action, the gauged sigma model action for link fields with 

the Wess-Zumino term can describe a t,hree dimensional gauge theory - the pure 

non-abelian Chern-Simons model which was solved in the continuum by Witten[G]. 

In the subsequent analysis, it will become clear that the primary benefit of the 

lattice approach is that the connection between 2-D conformal field theory and 

Chern-Simons theory is made explicitly at the Lagrangian level, 
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2. Chern-Simons Transverse Lattice Model 

In this section, we construct the local link action for the matrix-valued chiral 

field Un(z+ , r-), which belongs to the fundamental representation of SU(N), and 

which lies on the link between sites n and n + 1. The chain of sites has lattice spacing 

a, and is either periodic ( S’ topology ) or infinite (R’ topology). The link fields U, 

are continuous functions of the light-cone coordinates I* = (z” & z’)/fi, so that the 

1-D lattice describes a 2 + 1 dimensional field theory. The continuous 2-D manifold 

is specified as Minkowski space AP, although the analysis below generalizes trivially 

to the 2-sphere, and (with some extra work) to arbitrary Riemann surfaces. 

Consider the sigma model action with Wess-Zumino term[5], 

Il,,(U,, A, k) = -& jd%Tr ~,U,3‘U,’ + k,I’(U,) (2.1) 

Because the Wess-Zumino term is defined only up to l? + l? + 2~, the coupling 

constant k, must be an integer to make the Minkowski path integral well-defined. 

The action is invariant under the global symmetry CT --t AUB, where A4 and B are 

constant (independent of z*) unitary matrices. We wish to promote this to a local 

gauge symmetry at connecting sites, 

6CU” = An(z - u”A,+l(l’) (2.2) 

It is useful to define the currents 

J-,n = - +7”jU,‘, J,,” = -$u,‘(a+~,), 

J+ ,n = - g(a,r:,)u;~, j,” = -gu,‘(a-u”) 
(2.3) 

The gauge variations of the J currents are 

&J+,n =- Za,A n+l + [An+,, J+,n] - $I-‘a,h,U , 

6cJ-,n = - +n + (An, J-,,,I + $ua+~~~+~U-’ ~ 
(2.4) 

where the currents J are specified with respect to site n. The variations of the j 

currents are similar. For the critical coupling X2 = 2, !s, positive. the J+ currents 

are the ‘right’ conformal dimension one operators which generate the Iiac-Moody 

algebra of the WZW model, and the j* currents are the ‘wrong’ currents with 
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conformal dimension greater than one[7]. For the cases with opposite parity, X2 = 

-g, Jc, negative, the ‘right’ and ‘wrong’ labels are reversed. 

These definitions are useful because the gauge variation of the action (2.1) is 

linear in the currents, 

Wl,n =$ / d’xTr{ (k + $)[Ad+J-,, - L+I~-J+,,] 
+(;-ik) 

(2,5) 

[A,Lf+,, - A n+d+Lnl} 
To construct a gauge invariant action, we define SU(N) gauge fields A+,, = iA$,,T’ 

at each site n, where the adjoint representation matrices T” are normalized accord- 

ing to Tr T”Tb = ibab. The transformation law for the gauge fields is 

~c-b,n = &An + [A,, A+,“] . (2.6) 

Denote L(Un, A, A, L) = 11,~~ + Iz,=~ as the gauged sigma model action, where 

Iz,,, = & /d’zTr( (k + g)[.4-,n+tJ+,n - A+,,J-,, 

+ 

- A-,nj+,n + $A-,J’nA+,n+J’,‘l 

(* 7) 

- +-,“rl+,” + il+,,+rA-,,+rl) 

Even with this additional term, the action for each individual link is not gauge 

invariant, 

6~1, = 2 / d2zTr{li,P’~,A,,,, - ~L+rP’~,Av,~+r} , (2.8) 

where sf- = 1. The lack of gauge invariance is proportional to the Wess-‘Zumino 

couplings k, for each link field, and has the same form as the non-abelian anomaly in 

two dimensions. From eqn. (2.8) the ‘anomaly cancellation requirement is satisfied 

by an infinite chain, or by a finite chain with periodic boundary conditions, if the 

Wess-Zumino coupling is site independent, 

k,=k, ‘h. (2.9) 

Kate that the simplest solution is a lattice consisting of a single link with left 

and right sites identified. This is equivalent to gauging the anomaly-free vector 

subgroup of the left and right global chiral symmetries of the sigma model[8]. 
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Fig. 1. The Chern-Simons lattice model. The links on the one-dimensional lattice, with lattice 
spacing a, have sigma-model actions with equal Wess-Zum@o coupling constants k. 

Now consider the gauge invariant one-dimensional lattice configuration de- 

scribed locally by figure 1, with link action 

I=xI,,(X,k). 
” 

(2.10) 

The continuum limit of this model is obtained by representing the link field as 

a slowly varying function on the transverse lattice, 

U, = exp [-~AJ-(IA + $a)] , (2.11) 

where zl= no will become a continuous coordinate as a + 0, and then expanding 

equation (2.10) order by order in lattice spacing. The sign in the exponent in (2.11) 

is fixed by eqns. (2.2) and (2.6). The volume term is the leading O(a) contribution 

t which comes from the IZ,” contribution to the action of each link, 

I =& c a / d2xTr cijk [AiajAk - $A;AjAk] + O(CL’) 
TL (2.12) 

where i, j, k = {+, -, I} 

This is the pure Chern-Simons action for the 2 + 1 dimensionai gauge fields Ai. 

It is an exactly solvable quantum theory[6] with non-local degrees of freedom con- 

sisting of topological classes of Wilson loops. The coupling constant k is quantized 

in this theory by requiring gauge invariance under ‘large’ gauge transformations dis- 

connected from the identity. These are precisely the values recovered by taking the 

limit of the lattice model (2.10), for which the coupling constant was also quantized. 

Away from the critical point X2 = E, the quantum theory of the sigma model, 

which describes the link actions of the lattice model, has a mass gap. But since the 

coupling constant X of the sigma model action appears only to order a2, massive 

states should decouple from the low energy spectrum in the continuum limit. This 

agrees with the conformal invariance property of the continuum Cherxi-Simons the- 

ory. Therefore it should be possible to analyze the Chern-Simons theory with the 

critical lattice models. 
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3. Quantization and Gauge Fixing 

At criticality, the lattice model consists of a system of coupled gauged WZW 

models. We now briefly discuss the current algebraic solution of the quantum WZW 

model in light-cone coordinates, which was first given by Dashen and Frishman[S] 

for level one in the context of the Thirring model, and was later generalized to 

arbitrary level by Knizhnik and Zamolodchikov[7]. After this discussion, the effect 

of the coupling of the currents to gauge fields will be considered. 

It is insufficient to specify initial data on a single light-like hypersurface for the 

case of massless fields. Instead[lO], in the infinite volume limit of the If1 Minkowski 

space, the right-movers (functions of z- ) are specified on the line x+ = 0 and the 

left-movers (functions of z+) are specified on z- = 0. The momenta are given by 

P” = 
/ 

dz-T+“(z+ = 0) + 
/ 

dz+T-‘(z- = 0) (3.1) 

The commutation relations below specify the current algebra of the WZW 

model for the right-movers; there are equivalent expressions for the left-movers’ 

[J”(v), J:(d)] = ifab’J”(v) + &kP”S’(v -v’) (3.2) 

The mode expansion for the currents is obtained by imposing periodic boundary 

conditions for the appropriate light-cone coordinates r*[ll]. For the right-movers, 

J; = 
/ 

oL J”(v)z”dv , (3.3) 

where 
z = e2rivlL (3.4) 

The modes of the left-moving currents are denoted as ji, and both sets of modes 

satisfy Kac-Moody algebras. The space of states for the right-mover sector are built 

up from vacuum states satisfying 

J,alpo) =o ~ R > 0 

E,alw,) = 0 , 

where Eit”, Hi denote the zero mode currents JR in the Cartan-Weyl basis of the 

algebra. These vacuum states are the highest weights of the finite dimensional 

’ We discuss the positive k case; the negative k case has identical expressions with Ji -j* 
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representations 1~) generated by acting the zero modes on the highest weights 1~s). 

These highest weight representations for SU(iV) level k are unitary if they have 

Young tableau with the number of columns less than or equal to k[12]. We will 

consider diagonal representationswhich consist of products of highest weights which 

transformin the same representation under the left and right isospins. These unitary 

highest weight representations correspond to the primary fields o,(v) of the chiral 

algebra, which have simple commutation relations with the currents, 

[J”(v), 4,(v’)l= t;&J(~ - v’) 2 (3.6) 

where t; is a generator of SU(N) in the representation p. The highest weight field 

in the fundamental representation is identified with the classical link field. 

The gauged WZW model includes the interaction of WZW currents and gauge 

fields given by eqn. (2.7). In the gauge .4- = 0, the interaction reduces to 

-1 
I+ = - 

2tT / 
d’sTr A+,,J-,, 

The path integral over A+,, therefore imposes the Gauss law constraint J-,, = 0. 

In the quantum theory, the constraint on the Hilbert space 7iHprus of physical states 

is 

J;,,]phys) = 0 , m > 0, Vn , (3.8) 

where J$,, is the rnth mode of the right-mover current algebra of the nth link 

theory. This gauge fixing is incomplete, since the gauge constraint does not fix 

z+ dependent gauge transformations. On the remaining states in the Hilbert space, 

these gauge transformations are generated by the J+,* currents. Therefore, we keep 

states in the quantum theory which are in the gauge invariant subspace and satisfy 

the constraint 

J;,,]phys) = 0 , m > 0, V’n (3.9) 

A more complete discussion of the gauge fixing can be found in refs. [S],[l3]. The 

states which satisfy these constraints are the finite dimensional representations 1~) 

for each sector. 

The remaining constraints from the gauge theory are the projections onto states 

which are invariant under z* independent gauge transformations. In the continuum 

limit, these are the gauge transformations that are functions of the third coordinate 

XI. The generators of these gauge transformations for the lattice are the zero modes 

6 



of the currents. We therefore require that physical states satisfy 

(E;n - %,,-dlphys) = 0 , Vrx , (3.10) 

and 

(fG,,t - 6,,-Jpb) = 0 , Vn , (3.11) 

where again the Cartan-Weyl decomposition is used for the zero modes of the left 

and right mover currents. The important feature of these constraints is that they 

are non-local and relate states of the u link theory with nearest neighbor states. 

To specifically solve the constraints, consider a periodic lattice with L sites. 

This is the discrete version of the manifold M2 x S’. The solutions to the constraints 

for this geometry are 

I%) = fi IPOMP& . (3.12) 
n=l 

The constraint equation (3.10) requires the physical states to be products of the 

highest weight states of each link theory, and the final constraint (3.11) fixes the 

nearest neighbor highest weight states to be of the same representation. 

4. Path Integral with Wilson Loops 

The quantization approach outlined above yields the excitation spectrum of the 

lattice Chern-Simons theory quantized about the vacuum state IO). We now wish to 

compare this analysis with the path integral of the continuum Chern-Simons theory 

in the presence of Wilson loops. 

Each state given by eqn. (3.12) is the lattice version of the degree of freedom 

of a Wilson loop (carrying flux in representation p and winding once about S’), 

which is not eliminated by gauge fixing or by satisfying the Gauss constraints. In 

fact, a state corresponds in this way to an infinite number of Wilson loops in each 

topological class. 

To test this relationship further, we will calculate the correlation functions of 

operators which generate physical states on the discrete version of the manifold 

MZ x S’, and compare these correlators with results from the continuum Chern- 

Simons theory. These Wilson loop operators are constructed from the local op- 

erators which generate the highest weight states for each link theory. The local 

operators are in turn constructed from the zero modes of the primary fields ox 



of the WZW model. When acting on a highest weight representation ]p), the zero 

modes generate the tensor product of the primary field representation and the high- 

est weight representation. Th e irreducible representations occurring in the tensor 

product are given by the operator product algebra of the primary fields associated 

with each representation. This tensor product is therefore the ordinary SU(N) ten- 

sor product, with the additional constraint that the irreducible SU(N) representa- 

tions appearing in the product correspond to unitary Kac-Moody representations. 

These local operators are denoted as @,I, 

@xlpo) = phw[l~) 09 I41 = %,I4 1 (4.1) 

where the operator PI,,., projects onto the highest weight states of each irreducible 

representation in the tensor product. The left-mover representations are implicit in 

eqn. (4.1), and 4, is defmed to project onto diagonal product of left and right- 

mover representations. The operator product coefficient N,“,, is the multiplicity that 

counts the number of independent ways the representations A, p can fuse onto V. 

These coefficients satisfy the condition[l4] 

F N;vNTp = N;& > (4.2) 

which describes the sssociativity of the operator product expansion, in the context 

of the four point function of primary fields in the WZW model. This relation, and 

the symmetry N,, ’ = Nt*, implies that the (associative) algebra of the 9 operators 

is 

@,Q” = N;“rPx (4.3) 

To construct the operators which generate Wilson loops on the lattice, the @ oper- 

ators are glued together, 

R,=Tr fi ati,, , R,IRv) = $JW (4.4) 
n=l 

The ‘Tr’ projects the products of the @ operators onto configurations which satisfy 

the non-local constriants (3.11). 

The correlators of Wilson loops are products of the correlation functions of 

local operators for each link field theory, and therefore their expectation value is 

determined by the operator algebra eqn. (4.3), and the singlet selection rules of the 

conformal field theory for each link theory. The singlet selection rule requires that 
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the total product of operators afi at each link fuses onto the identity representation. 

The one, two and three point correlation functions are 

(%J = ~LI,O > 

(RJW = N;v > (4.5) 

(RxR,R,) = NIpN;v 

These expectation values are independent of the lattice spacing a. Therefore, un-. 

like other transverse lattice models[l], the coupling constants do not scale as the 

continuum limit is approached. This should be the case when the physical states 

are of a purely topological nature, and when the coupling constants are quantized. 

All physical quantities of the lattice theory calculated for finite a are therefore also 

the continuum results. 

The calculation of correlation functions for lattice Wilson loop operators on the 

topology S* x S’ is the same, since the Hilbert spaces of Kac-Moody states for Ms 

and S2 are isomorphic, and the above results agree with Wilson loop path integrals 

given for this topology in the continuum theory by Witten[G]. 

5. Discussion 

The transverse lattice construction has led to a very concrete connection be- 

tween 2-D conformal field theory and 2 + 1 Chem-Simons theory. Previous con- 

nections which were made by relating structures in the quantized Cherr-Simons 

theory to stuctures in 2-D conformal field theory. The construction discussed here 

is a lattice regularized version of the Chern-Simons theory, which turns out to be a 

system of coupled conformal field theories. The topological nature of the physical 

states makes the scaling behavior of the transverse lattice model trivial, so that the 

lattice model exactly describes the continuum theory. 

Although the analysis above describes a relatively trivial case of the Chern- 

Simons field theory, the transverse lattice construction clearly shows that the Chern- 

Simons model is probing the physics of the 2-D WZW model. For 3.manifolds with 

more complicated topology (see [6](15] and refs. therein), the Chern-Simons model 

will probe more features of the underlying WZW model physics, and the lattice 

picture may serve as a useful tool in unifying our understanding of the two systems. 

Also, as an intermediate step in the construction of transverse lattice models in 

the physical dimension, it displays the utility of the transverse lattice approach 

advocated by Bardeen and others. 
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The more phenomenologically interesting 3 + 1 transverse lattice models with 

Wess-Zumino terms in the link actions have additional conceptual twists, which will 

be addressed in a separate publication. In particular, one can ‘stagger’ the Wess- 

Zumino terms on the lattice to assure that in the naive continuum limit, the leading 

terms are order oz. There exist lattice configurations which have this property and 

are anomaly free. 

Acknowledgements: I would like to thank S. Chaudhuri, H. Dykstra, 0. Hernandez, 

and J. Lykken for useful comments and discussions. I am particularly grateful to 

W. Bardeen for discussions on transverse lattice physics. 

References 

[l] W. Bardeen and R. Pearson Phys. Rev. D14 (1976)547. 

[2] W. Bardeen, R. Pearsonand E. Rabinovici, Phys. Rev. D21 (1980)1037. 

[3] A.M. Polyakov and P. Wiegmann, Phys. Lett. 141B (1984)223. 

[4] J. Wess and B. Zumino, Phys. Lett. 37B (1971)95. 

[5] E. Witten, Commun. Math. Phys. 92 (1984)455. 

[6] E. Witten, Commun. Math. Phys. 121 (1989)351. 

[7] V. Knizhnik and A.B. Zamolodchikov, Nucl. Phys. B247 (1984)83. 

[S] D. Karabali, Q. Park, H. Schnitzer, and Z. Yang, Phys. Lett. 216B(1989)307. 

[9] R. Dashen and Y. Frishman, Phys. Rev. Dll (1975)2781. 

[lo] G. McCartor, Z. Phys. C41 (1988)271. 

Ill] P. Goddard and D. Olive, Int. J. Mod. Phys. Al (1986)303. 

[12] D. Gepner and E. Witten, Nucl. Phys. B278 (1986)493. 

[13] K. Gawedzji and A. Kupiainen, Nucl. Phys. B320 (1989) 625. 

P. Bowcock, Nucl. Phys. B316 (1989)SO. 

[14] E. Verlinde, Nucl. Phys. B300 (1988)360. 

[15] Y. Hosotani, Phys. Rev. Lett. 62 (1989)2785, 

M. Bos and V.P. Nair, Phys. L&t. 223B (1989)61, 

G. Dunne, R. Jackiw, and C. Trugenberger, Ann. Phys. 194 (1989)197. 

S. Elitzur, G. \Ioore, -4. Schwimmer, 1. r Sciberg, Nucl. Phys. B32G (!989)108. 

10 


